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Abstract 
Forced oil-water displacement and spontaneous countercurrent 
imbibition are crucial mechanisms of secondary oil recovery.  
The classical mathematical models of these phenomena are 
based on the fundamental assumption that in both these 
unsteady flows a local phase equilibrium is reached in the 
vicinity of every point.  Thus, the water and oil flows are 
locally redistributed over their flow paths similarly to steady 
flows.  This assumption allowed the investigators to further 
assume that the relative phase permeabilities and the capillary 
pressure are universal functions of the local water saturation, 
which can be obtained from steady-state flow experiments.  
The last assumption leads to a mathematical model consisting 
of a closed system of equations for fluid flow properties 
(velocity, pressure) and water saturation.  This model is 
currently used as a basis for predictions of water-oil 
displacement with numerical simulations. 

However, at the water front in the water-oil displacement, 
as well as in capillary imbibition, the characteristic times of 
both processes are comparable with the times of redistribution 
of flow paths between oil and water.  Therefore, the non-
equilibrium effects should be taken into account.  We present 
here a refined and extended mathematical model for the non-
equilibrium two-phase (e.g., water-oil) flows.  The basic 
problem formulation as well as the more specific equations are 
given, and the results of comparison with experiments are 
presented and discussed. 

 
1. Introduction 
The problem of simultaneous flow of immiscible fluids in 
porous media, and, in particular, the problem of water-oil 

displacement, both forced and spontaneous, is fundamental to 
the modern simulations of transport in porous media. This 
problem is also important for engineering applications, 
especially in the mathematical simulation of the development 
of oil deposits. 

The classical model of simultaneous flow of immiscible 
fluids in porous media was constructed in late thirties-early 
forties by the distinguished American scientists and engineers 
M. Muskat and M.C. Leverett, and their associates. The model 
was based on the assumption of the local equilibrium, 
according to which the relative phase permeabilities and the 
capillary pressure can be expressed through the universal 
functions of the local saturation. 

The Muskat-Leverett theory was in the past and is 
nowadays of fundamental importance for the engineering 
practice of the development of oil deposits. Moreover, this 
theory leads to new mathematical problems involving specific 
instructive partial differential equations. It is interesting to 
note that some of these equations were independently 
introduced later as simplified model equations of gas 
dynamics.  

Gradually, however, it was recognized that the classical 
Muskat-Leverett model is not quite adequate, especially for 
many practically important flows. In particular, it seems to be 
inadequate for the capillary countercurrent imbibition of a 
porous block initially filled with oil, one of the basic processes 
involved in oil recovery, and for the even more important 
problem of flow near the water-oil displacement front. The 
usual argument in favor of the local equilibrium is based on 
the assumption that a representative sampling volume of the 
water-oil saturated porous medium has the size not too much 
exceeding the size of the porous channels. In fact, it happens 
that it is not always the case and the non-equilibrium effects 
are of importance. 

A model, which made it possible to take into account the 
non-equilibrium effects, was proposed and developed by the 
first author and his colleagues.  This model was gradually 
corrected and modified.  It was confirmed by laboratory and 
numerical experiments.  In its turn, this model leads to non-
traditional mathematical problems.  

In this paper, the physical model of the non-equilibrium 
effects in a simultaneous flow of two immiscible fluids in 
porous media is presented as we see it now.  We give here the 
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basic problem statements and more special equations.  We 
also discuss some peculiar properties of the solutions to the 
capillary imbibition problem clearly demonstrating arising 
new effects.  This paper is considered as a basis for further 
investigations. 

 
 2. Physical model and basic equations 
 
2.1 The basic properties of the flow of two immiscible 
fluids in a porous medium: generalized Darcy law and 
conservation laws.  We begin by an assumption, which 
usually is not explicitly formulated, but actually is one 
fundamental.  This assumption is as follows.  Consider two-
phase water-oil flow (more generally speaking, wetting and 
non-wetting immiscible fluids) in an isotropic and 
homogeneous porous medium.  Then, for a given fluid (e.g. 
oil), the other one (water) and the porous skeleton of the 
stratum can be considered together as an effective porous 
medium.  Physically, it means that for a given fluid, the other 
fluid creates an additional drag, i.e. the lubrication effects for 
a given fluid do not exist.  This assumption makes it possible 
to apply to the two-phase horizontal flows in an isotropic 
porous medium a generalized Darcy law in the form: 
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Here the subscripts w and o correspond, respectively, to the 
water (wetting) and the oil (non-wetting) fluids, ui are the 

fluxes of the components, pi are their pressures, and 
i

µ  are 

their dynamic viscosities, i=o,w.  Furthermore, k is the 
absolute permeability of the porous medium determined from 
one-phase flow experiments; φ  is its porosity, i.e., the relative 

volume occupied by the pores; γ  is the surface tension at the 

water-oil interface.  The dimensionless quantities krw and kro, 
which according to our basic assumptions satisfy the 
inequalities 0≤ kri ≤ 1, are called the relative permeabilities. 
The function J, the dimensionless capillary pressure, has the 
name of the Leverett function in honor of M. C. Leverett. 

The mass conservation laws for both components of the 
mixture have the form: 
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Here S is the saturation, the fractional pore volume occupied 
by water, and t is the time. By taking the sum of equations (2), 
we obtain an important equation of the fluid incompressibility 

0u∇ ⋅ =    (3) 

Here u=uw+uo is the bulk flux. 
 

2.2 The classical Muskat-Meres-Leverett mathematical 
model of two-phase flow in porous media.  The system (1)-
(2) is not closed until the functions krw, kro and J are properly 
determined. The classical two-phase flow model proposed by 
M. Muskat, M. Meres 1 and M.C. Leverett 2 (see also a more 
recent book 3) is based upon the fundamental assumption that 
the local state of the flow is universal and fully equilibrium. 
This means that the functions krw, kro and J are functions of the 
actual water saturation S, identical for all processes involving 
two given fluid components and the rock: 

( )rwrwk k S= , ( )rorok k S= , ( )J J S=  (4) 

Thus, if these functions are known, the system (1)-(3) is 
closed. This mathematical model found numerous applications 
and nowadays it forms the basis of numerical simulations of 
the development of oil deposits throughout the world. 
 
2.3 Non-equilibrium effects.  As the functions krw, kro and J 
are, according to the classical model, universal, in principle, 
they can be obtained from any two-phase flow experiment.  In 
particular, they can be obtained from experiments with steady 
flows of mixtures at constant water saturation S through a 
cylindrical core.  Such experiments, indeed, were performed, 
and a generally accepted characteristic structure of these 
functions is presented in Fig. 1.  
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 Fig. 1.  The qualitative form of the universal functions. 
 

Let us formulate rigorously the properties of these 
functions, which will be used below.  The function krw is a 
monotone non-decreasing smooth function.  It is equal to zero 
for 0≤ S≤ S*, where S* is a certain constant 0≤ S*<1.  In other 
words, if the water saturation becomes lower or equal to S*, 
then the water flow stops.  The function krw(S), in accordance 
with the experimental data, will be assumed further to have 
multiple (at least two) zero derivatives at S=S*.  The function 
kro(S) is monotone non-increasing.  It is equal to one for 

0≤ S≤ S*, and equal to zero at * 1S S≤ ≤ , where S* is again a 

constant such that *

* 1S S< ≤  and the oil flow stops as the 

water saturation exceeds S*.  The function kro(S) is also 
assumed to have multiple zero derivatives at S=S*. Finally, the 
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Leverett function J(S) is monotonically decreasing.  It is equal 
to infinity at S=S*, equal to zero at S=S* and the derivative 
J'(S) at S=S* is equal to −∞ . For simplicity, it was assumed in 
Fig. 1 that S*=0 and S*=1.  We will use this assumption 
everywhere below. 

As it has been mentioned before, the classical model 
outlined in Section 2.2 played a decisive role in the numerical 
simulations of the development of oil deposits.  However, for 
strongly unsteady flows, like the capillary imbibition of a 
porous block, especially at its first stage, or the flow near the 
water-oil displacement front, which are of crucial importance 
for the calculations of the oil recovery, the classical model 
seems to be not quite adequate.  Indeed, it is well known to the 
experimentalists that before reaching the steady state needed 
to measure the relative phase permeabilities and the Leverett 
function it is necessary to pump through a porous specimen 5-
6 pore volumes of the mixture.  The physical reason for the 
prolonged time required to change the fluid saturations from 
one steady-state value to another is transparent.  In a steady-
state flow, there exist separate networks of flow paths 
connecting the flowing portion of each phase. The flow paths 
of the nonwetting fluid, oil, are within a fixed network of pores 
and the fluid flows through the central parts of these pores. 
The wetting fluid, water, remains connected throughout most, 
if not all, pores in the porous medium.  Water occupies the 
smallest pores, which have capillary entry pressures above the 
current capillary pressure level.  In the pores where both fluids 
flow, the water flows along the pore corners in filaments and 
in the pore-wall roughness.  Any change of the capillary 
pressure results in the rearrangement of both flow networks 
resulting in changes of (1) their connectivity, and (2) their 
overall hydraulic conductances for the fluids flowing in them.  
A detailed investigation of the microscopic, pore-level 
mechanisms governing such a rearrangement was performed 
in 4, see also the references therein. In fact, the relative flow 
rates in all pores, and, possibly, the types of the flowing fluids 
in some pores must change. Therefore, a capillary pressure 
change implies myriads of single-pore rearrangements. The 
time elapsed to pass from one steady-state configuration to 
another can be substantial.  Characteristic time of such a 
rearrangement of the flow networks and consequent 
modification of their flow properties is called the 
redistribution time. 

For the processes with slowly varying water saturation S, 
the characteristic time scale of the process is large in 
comparison with the redistribution time and the hypothesis of 
the equilibrium local distribution of phases in the porous 
medium can be accepted.  In such a case, the functions krw, kro 
and J in the relations (1) can be assumed to be the universal 
functions (4) of the water saturation S only.  However for the 
fast processes, among which are such practically important 
processes as the capillary imbibition or the forced water-oil 
displacement near the front, the characteristic time scale of the 
process is often of the order of the redistribution time, and the 
classical approach based on the relations (4) becomes invalid. 

For such non-equilibrium processes, the actual values of 
the relative phase permeabilities and the Leverett function 

defining the flux at a given water saturation can be 
significantly different from the respective values of the 
functions krw, kro and J obtained by steady-state measurements 
or by some other experiment based on the assumption of the 
universality of relationships (4).  

There are, however, some instructive properties of the 
functions krw(S), kro(S) and J(S) determined under equilibrium 
conditions which allow one to avoid this difficulty.  Namely, 
the structure of the function krw(S) allows one to claim that for 
every non-equilibrium process there exists an effective 
saturation η , generally speaking different from S, and such 

that the non-equilibrium value of krw  is equal to the 
equilibrium value of the same function krw evaluated, however, 
not for the actual saturation S but for this effective saturation 
η .  In fact, according to the basic assumptions, the oil, being a 

component of the effective porous medium, creates an 
additional drag. However, the function krw is a monotone 
function of water saturation, which varies from zero to one.  

Therefore, there exists a certain value η , for which ( )rw
k η  is 

equal to the non-equilibrium relative permeability of water.  
For the functions kro and J, analogous statements are valid as 
well.  An important point here is that the effective saturation 
η  is always higher than the actual saturation S, or equal to it 

(Figure 2) for all three quantities. 
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Fig. 2.  The effective saturation η  is always higher than the actual 

saturation S. 
 
Indeed, we consider here only immiscible two-phase flow 

in a porous medium, like water-oil displacement, where the 
local water saturation is increasing, or at least non-decreasing, 

so that 0
S

t

∂
≥

∂
. For the forced water-oil displacement, a 

certain part of the water temporarily occupies the wider 
channels, which in the future will be retaken by the oil. 
Therefore, the relative water permeability for a non-
equilibrium process should be higher, or at least not less than 
for the equilibrium one. At the same time, the oil temporarily 
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occupies the narrow channels, which it will release in favor of 
the water after the redistribution of the fluids. Therefore, the 
relative oil permeability should be less, or at least not larger 
than the equilibrium one. Due to the same reasons, the non-
equilibrium capillary pressure (Leverett function) is less (not 
higher at least) than the equilibrium one. 

In spontaneous imbibition, a genuinely non-equilibrium 
process, the capillary pressure decreases in very small 
decrements as quickly as the flow networks can adapt.  As a 
result, the water saturation increases monotonically, the 
hydraulic conductance of the water flow network also 
increases monotonically, while the reverse is true for the oil 
flow networks (there can be many of them, each connected to 
the inlet, the outlet, or both). It just takes some time for these 
changes to occur.  Therefore we may introduce an effective 
water saturation η , and evaluate all the macroscopic flow 

functions, i.e., both relative permeabilities and the capillary 
pressure at that saturation.  As a result, in a non-equilibrium 
flow, the water relative permeability will always be higher, the 
oil relative permeability will always be lower, and the 
macroscopic driving force for the imbibition, the capillary 
pressure, will also be lower.   

This positive shift from the actual saturation to the 
effective one could be, generally speaking, different for all 
three functions krw, kro and J.  We will make however an 
essential simplifying assumption: for all three functions krw, 
kro and J the effective saturations are identical, so that instead 
of the relationships (4) we have 

( )rwrwk k η=  ( )rorok k η=  ( )J J η=  (5) 

where the functions krw, kro and J are the universal functions 
measured under the conditions of the steady-state flow. 

The new model will be closed if we provide a relationship 
between the actual saturation S and the effective saturation η .  

The difference Sη −  is, in fact, a complicated functional 

reflecting the whole history of the process.  Bearing in mind 
the first order non-equilibrium effects, we will assume that 
difference Sη −  depends on the current saturation S, the 

current saturation rate 
S

t

∂

∂
 and the redistribution time τ .  

Thus, we get  
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where Χ  is a dimensionless function.  From dimensional 
analysis, we obtain 
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where Ψ  is another dimensionless function.  Obviously, 

( ),0 0SΨ = , because Sη =  for the processes with a steady 

saturation.  Furthermore, the argument 
S

t
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∂
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represented in the form 
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∂
, where T is the characteristic 

time scale of the process, and 
t

T
ϑ =  is the dimensionless 

time based on this global time scale. For the non-equilibrium 
processes slightly deviating from equilibrium, we have the 
basic dimensional parameter 

 
T

ε
τ
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much less than unity: 1ε � .  Expanding (7) in the small 
parameter ε  and restricting ourselves by the first term of the 
expansion, we obtain 

 ( ) S
S g S

t
η τ

∂
− =

∂
   (9) 

where g(S) is a certain function of the actual water saturation.  
We can assume further that g(S)=1, because the redistribution 
time τ  is a quantity defined only with the accuracy of a factor 
of the order of unity, and, moreover, generally speaking the 
redistribution time is also saturation-dependent (see below).  
Hence, we come to the final relation, which will be used in the 
whole further presentation 
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Moreover, for simplicity, at first we will assume that 
constτ = .  In fact, at endpoint saturations S=S* and S=S* the 

redistribution time can have a singular behavior, and some 
interesting effects are related to this behavior, as we will see 
below. 

Thus, the system (1), (2), (5) and (10) is closed, and it will 
be considered as a basic mathematical model for our further 
consideration of the non-equilibrium two-phase flows in 
porous media. The system can be reduced to the form of 
equations (3), (10) complemented by the equation 
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by the following relationships: 
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( ) ( ) ( ) ( )
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In equation (12), o

w

µ
µ

µ
= .  The functions (12)-(13) are also 

plotted in Fig. 1.  Both curves F and Φ  have a characteristic 
S-shaped form and multiple zero derivatives at S=S* and S=S*.  
Furthermore, F(S*)=1. 

Note that from Eq. (10) we obtain that in the first 
approximation 

( )S tη τ= +     (14) 

so that according to the accepted mathematical model the 
effective saturation η  is the saturation at a certain time 

ahead, not behind the actual time.  There is no paradox here: 
the redistribution of the channels between the fluids described 
above is a more complicated process than the memory of the 
saturation evolution. 

From equations (11) and (10), the basic equation for the 
effective water saturation η  can be obtained: 
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There is, however, a delicate point.  Equation (15) is an 
evolution equation, and for solving it an initial condition is 
needed 

 ( ) ( )0
0, x xη η=    (16) 

However, it is impossible to prescribe this initial condition, 
because the effective saturation is not, in fact, a measurable 
quantity.  What can be considered as a quantity, which can be 
prescribed is the actual water saturation only because the latter 
is directly measurable: 

 ( ) ( )0
0,S x S x=    (17) 

However, using Eq. (17) we can obtain the initial 
distribution of the effective saturation (16).  Indeed, 

relationship (10) implies 
S S

t

η
τ

∂ −
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= .  Putting this into 

equation (11) at t=0 we obtain an elliptic differential equation: 
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By solving this equation with respect to 0η , the initial 

distribution of the effective saturation ( )0 xη  can be obtained.  

We remind that S0(x) on the right-hand side of equation (18) is 

a known function.  It is essential that in equation (18) the 
actual water saturation S0(x) can be, in general, discontinuous 

at the boundary ∂Ω , whereas the function ( )0 xη  is 

continuous. 
The physical model and the basic equations presented here 

are a modified version of the model presented in papers 5 and 
6, see also Ref. 3.  An important experimental verification of 
this model was performed in the instructive work by 
Bocharov, Vitovsky and Kuznetsov 7.  Numerical 
computations of non-equilibrium flows based on this model 
were performed by Bocharov, Kuznetsov, Chekhovich 8.  The 
character of the modification and the modified problem 
statements will be clear after the consideration of the most 
important special cases: the countercurrent capillary 
imbibition of a porous block filled initially by oil, and the flow 
near the water-oil displacement front 

 
2.4  Capillary countercurrent imbibition.  For this flow, due 
to the incompressibility of both fluids, the bulk fluid flux is 
identically equal to zero: 

0
w o

u u u= + ≡    (19) 

Therefore, the basic equation for the effective water saturation 
(15) reduces to the form 
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and the initial condition is obtained by solving the equation 

 ( )0 xη ( )( ) ( )2 2

0 0a x S xτ η∇− Φ =  (21) 

under the appropriate boundary conditions. This problem was 
considered in 9, and equation (20) was obtained and 
qualitatively investigated there.  A rigorous mathematical 
investigation was performed in 10 and in 11. 

We will illustrate now the basic qualitative differences 
between classic equilibrium model ( 0τ = ), and the proposed 
non-equilibrium model ( 0τ > ).  According to the classical 
model, the water saturation S satisfies the nonlinear parabolic 
equation 

S

t

∂

∂
( )2 2a S∇= Φ    (22) 

This equation was obtained by Ryzhik 12.  Due to the 

properties of function ( )SΦ  formulated above, for an initial 

condition identically equal to zero outside a certain finite 
domain, the solution to the equation (22) also vanishes outside 
a certain finite domain, depending on time.  In particular, if we 
consider a three-dimensional porous block Ω , which initially 
does not contain water, so that S0(x) ≡ 0 in Ω , and at t=0 the 
boundaries become open for the water, the latter will 
propagate into the block gradually.  It means that at small t, 
the region near the boundary where the water is penetrated is 
arbitrarily narrow. 
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It is not so when the redistribution time τ  is positive and 
constant.  As shown in 9-11, the initial effective saturation is 
different from zero in a finite, not arbitrarily narrow region 
near the boundary of the domain Ω  at arbitrarily small t>0.  
Therefore, at arbitrarily small times the water penetrates a 
finite part of the block.  In particular, if the size of the block is 
not large, the water can penetrate the whole block 
instantaneously.  If the block is large enough and cannot be 
imbibed instantaneously, then the property of the finite speed 
of water propagation is preserved. 

Consider now the special case of one-dimensional non-
equilibrium countercurrent water imbibition to a large initially 
oil-saturated porous block contacting water at the inlet face.  
Then, equation (11) takes the following from: 
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Here the x  axis is directed into the block orthogonally to its 
inlet face.  This problem was considered in 9 under the 
assumption that the redistribution time τ  is a positive 
constant and the equation for the initial distribution of the 
effective saturation had the form 
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where S0(x) is the initial distribution of the actual water 
saturation.  Of special interest is the case when the initial 
water saturation is zero.  Then, as shown in 9, the function 

( )0
xη  - the initial effective saturation - is different from zero 

on a certain interval 
0

0 x x≤ ≤ , where x0 is a positive constant 

obtained in the course of solution (Fig. 3).  This means that the 
water penetrates into a certain part of the block 
instantaneously, but further it propagates into the block with a 
finite speed. 

However, the assumption that the redistribution time is 
constant cannot be justified in the case where the initial 
saturation is zero.  At low saturations, water flows through the 
narrowest flow paths in corners of porous space and the 
capillary pressure is high.  Therefore, the time needed to 
reconfigure water distribution is small and the relaxation time 
goes to zero as the saturation of the wetting fluid approaches 
its minimal value.  As the oil saturation is approaching its 
residual value, the capillary forces weaken and the 
connectivity of oil grows sparse; hence, the redistribution time 
increases infinitely.  On the major part of the interval between 
the endpoint saturations, the variation of relaxation time is 
relatively small.  The dependence of relaxation time on water 
saturation was considered earlier in 7, 8 in the context of 
numerical simulations of forced water-oil displacement.  In 

both papers, it was assumed that ( )0 0τ = . 
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Fig. 3.  The effective saturation ( )

0
xη  is different from zero in a finite 

region at arbitrary small time. 
 

By this reason, in 13 the problem of water imbibition into a 
semi-infinite initially oil-saturated block was reconsidered 
under the assumption that τ  is a function of saturation 
vanishing at S=0 and going to infinity at S close to one.  An 
additional assumption of the power-law saturation dependence 
at low saturation was accepted.  Under these assumptions, the 
initial value of the effective saturation is also zero according 
to Eq. (10).   

In 13, the asymptotic solutions were obtained at small and 
large times. It was assumed that for most part of the interval 

(0,1) the relaxation time is close to a constant value 
0

τ , 

whereas at S* and S* is goes to zero and infinity, respectively.  
Therefore, at large t, on a major portion of the interval of 
water penetration, the actual instantaneous saturation exceeds 
the threshold, above which the relaxation time is equal to a 

constant value 0τ .  For this case, it was obtained that the 

cumulative oil recovery through the inlet face of the block can 
be expressed as  

( ) 0

0

01

t
t

R t V e
τ

τ

−

≈ −
� �
� �� �
� �

   (25) 

Here R(t) is the dimensionless ratio of the volume of 
recovered oil and the initial volume of the oil contained in the 
block.  The coefficient V0 was expressed through the 
parameters of the model.  It depends on the phase relative 
permeabilities and viscosities, on the absolute permeability 
and porosity of the rock, on the inlet face area, on the 
relaxation time and Leverett’s function J.  By virtue of 
equation (25), at t → ∞  the oil recovery from the block is 
approximately proportional to the square root of time, i.e. the 
time scaling suggested by the classical model.   

Equation (25) was verified against the results of laboratory 
measurements reported in 14.  The detailed data were kindly 
provided to us by the authors.  Experiments were performed 
with samples obtained from near surface diatomite formation 
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near Lompoc, CA.  The samples were cut in a direction 
parallel to the bedding plane and shaped into cylinders with 
the diameters of 2.5 cm and the length of 9.5 cm.  The 
porosity of the rock samples was about 70%, the absolute 
permeability was about 6 mD.  For imbibition experiments, 
the samples were dried and oil was pumped into the pore 
space.  After fully saturating a sample with oil, water was 
pumped through one endcap while the other endcap was 
sealed.  The oil recovered by countercurrent imbibition was 
removed by the flowing water.   

We matched the measured fractional oil recovery versus 
time using Eq. (25).  Our fitting parameters were the 

relaxation time 
0

τ  and the coefficient V0.  In Fig. 4, the data 

points from different experiments collapse into a single curve 

based on formula (25).  The relaxation time 0τ  was estimated 

at about 8 s for imbibing a dry sample with no oil, at about 
220 s for a sample filled with blandol and at approximately 
1230 s for the water-decane pair.  For comparison, the same 
data are plotted in Fig. 5 versus the dimensionless time 
proposed in 14: 

2

1
ro rw

D

o w ro w rw o

rw o ro w

k k k
t t

L k k

k k

γ
φ µ µ µ µ

µ µ

=

+

 (26) 

Here L is a characteristic length scale of the sample.  For 
scaling, some characteristic values of the parameters 
depending on water saturation were used in 14. 
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Fig. 4.  Matching scaled oil recovery reported by Zhou et al 14. The 
type curve corresponds to Eq. (25). 
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Fig. 5.  The data curves from Fig. 4 plotted versus the dimensionless 
time (26) proposed in the work 14. 

 
Discussion.  Laboratory experiments with spontaneous 

imbibition of various rock samples were broadly reported in 
the literature.  In 15 and 16, the scaling laws developed from 
the classical model in 17 were used for interpretation of the 
laboratory coreflood experiments at a reservoir length scale.  
However, the oil recovery curves in countercurrent imbibition 
experiments did not follow the classical square root of time 
rule, especially at early times, see e.g., 18.  This phenomenon 
was investigated experimentally and confirmed in numerous 
following works, see 14, 19-24.  As it has been mentioned 
above, the non-equilibrium effects reduce if the viscosities of 
the fluids are low and the laboratory sample permeability is 
high.  This is confirmed by experiments with imbibition of dry 
cement pastes by water 25. 

The influence of the temperature conditions and the 
presence of chemical additives on countercurrent imbibition 
oil recovery was studied experimentally in 26 and 27.  

Within the model overviewed in this paper, the deviation 
of the oil recovery curve from the classical square root of time 
rule has been explained by the non-equilibrium nature of the 
process of imbibition.  Attempts to model and numerically 
simulate this phenomenon based on the classical model also 
were undertaken by the researchers.  Numerical studies of 
countercurrent imbibition were started in early works 28, 29.  
In 30 the numerical simulations were extended to 2D flow.  
All these papers were based on the classical approach.  A 
comparative survey of other works, also based on the classical 
model with minor variations, was presented in 31.  In 32, 33, a 
“delayed”  inlet boundary condition was introduced that 
allowed to match the laboratory data using the classical 
approach.  In these papers, this condition was derived from an 
empirical relationship proposed in 34.  The same approach 
made possible good matching of the data in 35.  In fact, this 
“delayed”  boundary condition was derived from the non-
equilibrium spontaneous imbibition model in 9 and the 
exponential decay rate was explicitly linked to the relaxation 
time.   
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A system of equations characterizing multiphase flow in 
porous media was obtained in 36.  This system is incomplete, 
however, an important observation derived in this work from 
the pore-scale thermodynamic analysis of consequences of 
fast-changing saturations was that at transient conditions, the 
capillary pressure calculated using the curve obtained at 
steady-state flow has to be modified by a term proportional to 
saturation rate change.  The development of this model was 
continued in 37-39 and a mathematical investigation was 
performed in 40.  Formally, the last equation (5) and (10) can 
be related to the model proposed in these subsequent works, 
but they do not take into account the changes in relative 
permeabilities.  Also, neither a characteristic redistribution 
time nor effective saturation are introduced, so the derivations 
of the model proposed in 36, and the one overviewed in this 
paper are fundamentally different.   

In 22, a drag force caused by simultaneous flow of two 
fluids in a porous stratum was incorporated into the Darcy’s 
law.  As a result, the permeability coefficient became a tensor 
even for an isotropic rock.  Although the numerical 
simulations based on this assumption matched the data 
measured in individual countercurrent imbibition experiments, 
the universality of the cross-terms in the permeability tensor 
was not established in 22.   

 
2.5 Forced water-oil displacement.   
The mathematical model of the forced water-oil displacement 
taking into account non-equilibrium effects was presented in 6, 
a complete rigorous mathematical investigation was 
performed in 41.  An important special case where the direct 
capillary pressure effects can be neglected (but not in relative 
permeabilties) was rigorously investigated in 42. 

The most important manifestation of the non-equilibrium 
effects consists in the following. 

In the classical paper by Rapoport and Leas 43, the concept 
of stabilized zone around the water-oil displacement front was 
introduced.  The stabilized zone is a quasi-steady region 
around the displacement front (a region of sharp variation of 
the water saturation), which determines the structure of the 
transition between injected water and oil.  In the subsequent 
paper 44, the stabilized zone was obtained as a rigorous 
solution of the traveling-wave type of the equation of the 
Muskat-Leverett model.   

A paradoxical property of the results obtained in 43 and 44 
was that the width Λ  of the stabilized zone where the 
saturation sharply changes appears to be decreasing inversely 
proportional to the displacement speed v, Fig. 6, a.  This result 
seems to be unnatural.  Taking into account the non-
equilibrium effects (the redistribution time) led to a different 
and more natural result, Fig. 6, b.  The stabilized zone around 
the displacement front also is obtained, but its width with 
growing velocity at first is decreasing, than it reaches a certain 
minimum, and after that starts to increase.  In the limiting case 
of large displacement speeds, when the capillary pressure 
become negligible (but the capillary effects in relative 
permeabilities are still preserved) the width of the stabilized 
zone is increasing linearly with the displacement speed, until it 

becomes comparable with the distance between the wells, and 
the stabilized zone disappears. 

 

0
1/v

(a)

(b)

Λ

1/v*  
 

Fig. 6.  The width of stabilized zone is proportional to 1/v according to 
Rapoport-Leas model (a), and has a global minimum at a certain v=v* 
according to the non-equilibrium model (b). 

 
 

Conclusions 
An overview of the theory of non-equilibrium water-oil (or, 
more generally, wetting – non-wetting fluid) displacement 
proposed and developed in 5, 6, 9, 11, 41 has been presented.  
The non-equilibrium effects become important when the 
characteristic transition times become comparable or smaller 
than the time needed for the redistribution of the fluids in flow 
paths inside the pore space.  Two practically very important 
processes of this type have been considered: spontaneous 
countercurrent imbibition and flow at the front of the forced 
water-oil displacement.  A rigorous presentation of the 
respective physical phenomena and their mathematical models 
has been performed.  The results of a comparison with 
experiments are presented.  The effects of dependence of the 
relaxation time on the water saturation have been discussed 
and the corresponding modification of the problem 
formulation is presented.   

To summarize, the presented discussion of non-
equilibrium effects in water-oil displacement presented in this 
paper shows that these effects are of primary importance for 
such processes as countercurrent capillary imbibition and 
forced water-oil displacement. 
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Nomenclature 
 
 a2 =  diffusivity coefficient, L2/t 

 F = fractional flow function, dimensionless 

 g = dimensionless function 

 J =  Leverett’s function, dimensionless 

 k =  absolute permeability of the rock, L2 

 krw =  relative permeability to oil, dimensionless 

 krw =  relative permeability to water, dimensionless 
 L = characteristic length, L 

 po =  oil pressure, m/Lt2 

 pw =  water pressure, m/Lt2 

 R(t) =  dimensionless cumulative oil recovery 
 S =  actual water saturation, dimensionless 
 S0 =  initial water saturation, dimensionless 

 u =  total flux, L/t 

 uo =  oil flux, L/t 

 uw =  water flux, L/t 
 t = time, t 

 tD = dimensionless time 

 T = process characteristic time, t 

 v =  water-oil front velocity, L/t 
 V0 =  dimensionless volume 

 Nε  = dimensionless time 

 γ  =  oil-water interface surface tension, m/t2 

 φ  =  rock porosity, dimensionless 

 Φ  =  dimensionless function 

 Ψ  =  dimensionless function 
 Χ  =  dimensionless function 
 Λ  =  the width of stabilized zone, L 

 µ  =  the ratio /o wµ µ , dimensionless 

 oµ  =  oil viscosity, m/Lt 

 wµ  =  water viscosity, m/Lt 

 η  = effective water saturation, dimensionless 

 0η  =  initial effective water saturation, dimensionless 

 τ  =  redistribution time, t 
 Ω  =  a domain in a porous medium 
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